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TRANSIENT RESPONSE OF ONE-DIMENSIONAL
DISTRIBUTED SYSTEMS: A CLOSED FORM

EIGENFUNCTION EXPANSION REALIZATION
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The exact and closed form transient response of general one-dimensional distributed
dynamic systems subject to arbitrary external, initial and boundary disturbances is
determined. Non-self-adjoint operators characterizing damping, gyroscopic and circulatory
effects, and eigenvalue-dependent boundary conditions are considered. Through
introduction of augmented operators, a closed form modal expansion of the displacement
and internal forces of the distributed system is derived. The eigenfunction expansion is
realized in a spatial state space formulation, which systematically yields exact
eigensolutions, eigenfunction normalization coefficients and modal co-ordinates. The
proposed method is illustrated on a cantilever beam with end mass, viscous damper and
spring.
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1. INTRODUCTION

Transient response analysis plays an important role in the design of a variety of distributed
dynamic systems, such as bridges, buildings, automobiles, airplanes and machines with
flexible components. This work is concerned with closed form eigenfunction expansion of
the transient response of a class of non-self-adjoint distributed dynamic systems.

Eigenfunction expansion or modal expansion is a commonly used technique for transient
analysis of distributed dynamic systems [1–5]. Conventional modal analysis of self-adjoint
systems is facilitated by the orthogonality relations among system eigenfunctions, based
on which an eigenfunction series representation of system response decouples the original
equations of motion into a set of independent equations governing the unknown
time-dependent coefficients of the series, or modal co-ordinates. Solution of those
decoupled equations for the modal co-ordinates yields a closed form estimation of the
system transient response. The convergence of the series solution is guaranteed by the
completeness of system eigenfunctions.

Conventional modal expansion is not directly applicable to non-self-adjoint systems the
eigenfunctions of which associated with the original equations of motion are
non-orthogonal. For certain non-self-adjoint distributed systems, the closed form transient
response can be expressed by a series of bi-orthogonal eigenfunctions in a state space
formulation [6, 7]. In this generalized modal analysis, the completeness of the state space
eigenfunctions is often assumed without justification.

The problem becomes more complicated if a non-self-adjoint system has
eigenvalue-dependent boundary conditions, due to lumped masses and energy dissipative
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devices at its boundary. In this case, the state-space formulism fails to yield closed form
solutions. In a recent study [8], a closed form series solution for a longitudinally vibrating
bar with an end viscous damper is formulated by changing the spatial interval of the
problem. Nonetheless, closed form eigenfunction expansion for general one-dimensional
distributed systems is not available. Moreover, most previous studies assume homogeneous
boundary conditions; the effects of external loads and specified motion at the boundary
are usually neglected in a closed form solution.

Even if a closed form modal expansion is available, its realization in a specific problem
is fully dependent on the estimation of system eigensolutions, eigenfunction normalization
coefficients and modal co-ordinates, which has been a challenging task for non-self-adjoint
distributed systems. Because of this and the problems discussed previously, transient
analyses of non-self-adjoint systems often rely on approximate methods, such as the finite
element method [9, 10]. Although the finite element method is capable of modelling
complicated distributed systems, it is computationally intensive, especially for systems with
high-frequency dynamics, and depends on particular cases of computation to understand
the effects of model parameters on the system transient response. Closed form analytical
solutions, if obtainable, are always desirable because of their numerical efficiency, and
physical insight into the problem.

In this paper, an exact closed form solution method is proposed for transient analysis
of general one-dimensional distributed systems which have non-self-adjoint operators and
eigenvalue-dependent boundary conditions, and are subject to arbitrary external, initial
and boundary disturbances. An eigenfunction series solution is derived through
introduction of augmented spatial operators, and through application of a modal
expansion theorem given in reference [11]. The convergence of the modal series is assured
without the completeness assumption about system eigenfunctions. With a spatial state
space formulation, exact eigensolutions, eigenfunction normalization coefficients and
modal co-ordinates are systematically obtained, leading to a highly accurate closed form
transient response prediction. Besides the displacement, the slope and internal forces of
the distributed system are simultaneously determined, without differentiation of the
displacement function. The proposed method is demonstrated on a cantilever beam
with end mass, viscous damper and spring, and is compared with the finite element
method.

2. STATEMENT OF PROBLEM

The displacement w(x, t) of the distributed dynamic system is governed by the
non-dimensional partial differential equation

(A 12/1t2 +B 1/1t+C)w(x, t)= f(x, t), x$(0, 1), (1a)

with the initial conditions

w(x, 0)= u0(x), 1w(x, t)/1t=t=0 = v0(x), x$(0, 1) (1b)

and boundary conditions

(ALj 1
2/1t2 +BLj 1/1t+CLj )w(x, t)=x=0 = qLj (t),

(ARj 1
2/1t2 +BRj 1/1t+CRj )w(x, t)=x=1 = qRj (t), (1c)
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for j=1, 2, . . . , N, where f(x, t), u0(x) and v0(x), and qLj (t) and qRj (t) are the external,
initial and boundary disturbances, respectively, A, B and C are the spatial differential
operators of order 2N given by

A= s
2N

k=0

ak
1k

1xk , B= s
2N

k=0

bk
1k

1xk , C= s
2N

k=0

ck
1k

1xk , (2)

with ak , bk and ck being constant coefficients, and ALj , BLj , CLj , ARj , BRj and CRj are spatial
differential operators of up to (N-1)th order, in a form similar to equation (2). Equations
(1) describe a wide class of distributed parameter systems such as strings, bars, beams,
beam-columns, flexible rotating shafts, axially moving materials and flexible robot arms.
The operators ALj , BLj , ARj and BRj characterize lumped end masses and viscous dampers.

In this work, a closed form solution of equations (1) is sought via eigenfunction
expansion. The eigenvalue problem associate with the original equations of motion (1) is
defined by

(l2
kA+ lkB+C)uk (x)=0, x$(0, 1), k=21, 22, . . . ; (3a)

(l2
kALj + lkBLj +CLj )uk (x)=x=0 =0, j=1, 2, . . . , N;

(l2
kARj + lkBRj +CRj )uk (x)=x=1 =0, j=1, 2, . . . , N; (3b)

where lk are the eigenvalues, and uk (x) are the corresponding eigenfunctions or mode
shapes. The adjoint eigenvalue problem is

(l�2
kA*+ l�kB*+C*)vk (x)=0, x$(0, 1); (4a)

(l�2
kA*Lj + l�kB*Lj +C*Lj )vk (x)=x=0 =0, j=1, 2, . . . , N;

(l�2
kA*Rj + l�kB*Rj +C*Rj )vk (x)=x=1 =0, j=1, 2, . . . , N; (4b)

where A* is the adjoint of A, and A*Lj is the adjoint of ALj , etc., and the overbar denotes
complex conjugation. Because the coefficients of all operators are real, l−k = l�k for any
k. The adjoint operators and the boundary conditions (4b) are obtained from the integral

g
1

0

{v̄(x)[l2A+ lB+C]u(x)− u(x)[l2A*+ lB*+C*]v̄(x)} dx=0,

where l is an arbitrary constant, and u(x) and v(x) are differentiable functions satisfying
the boundary conditions (3b) and (4b), respectively, with lk replaced by l. It is easy to
show that

A*= s
2N

k=0

(−1)kak
1k

1xk , B*= s
2N

k=0

(−1)kbk
1k

1xk , C*= s
2N

k=0

(−1)kck
1k

1xk .

Modal analysis of distributed dynamic systems depends on the establishment of
orthogonality relations for system eigenfunctions, and normalization of system
eigenfunctions. The distributed systems modeled by equations (1) in general is
non-self-adjoint, mainly due to damping, gyroscopic and circulatory effects and due to
eigenvalue-dependent boundary conditions (see equations (3b) and (4b)). Because of this,
conventional modal analysis techniques are not directly applicable here; equations (1) are
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normally solved by numerical methods. Also, it should be noted that eigenfunction
normalization has been a challenging task because calculation of normalization coefficients
requires spatial integration of system eigenfunctions over the entire domain of the
continuum, which is different for different boundary conditions. Additionally, the
completeness of system eigenfunctions is often assumed to guarantee the convergence of
the eigenfunction series—which, however, is difficult to verify for non-self-adjoint
systems.

The objective of the current study is to develop a new modal analysis for obtaining an
exact and closed form solution of equations (1), which has not been available in the
literature. In the proposed method, an eigenfunction expansion is derived through
introduction of equivalent augmented governing equations (section 3), and realized in a
spatial state space formulation (section 4). As shall be seen, with the new method, the
aforementioned difficulties can be overcome or avoided.

3. EIGENFUNCTION EXPANSION

As mentioned in the previous section, the boundary conditions of the distributed system
are eigenvalue-dependent, which makes it difficult to obtain a closed form eigenfunction
series solution for the original equations (1). In this section, equations (1) are cast into
an equivalent augmented form, from which a closed form eigenfunction expansion results.

By defining the augmented operators

A
 =diag {A AL1 · · · ALN AR1 · · · ARN},

B
 =diag {B BL1 · · · BLN BR1 · · · BRN},

C
 =diag {C CL1 · · · CLN CR1 · · · CRN}, (5)

equations (1) can be rewritten as

(A
 12/1t2 +B
 1/1t+C
 )W(x, t)=F(x, t), x$(0, 1); (6a)

W(x, 0)=U0(x), 1w(x, t)/1t=t=0 =V0(x), (6b)

where the displacement and external force vectors are

W(x, t)= 8 w(x, t)
w(0, t) · 1N

w(1, t) · 1N9, F(x, t)= {f(x, t) qL1(t) qLN (t) qR1(t) qRN (t)}T, (7a)

with 1N = {1 1 · · · 1}T$RN, and the initial displacement and velocity vectors are

U0(x)= 8 u0(x)
u0(0) · 1N

u0(1) · 1N9, V0(x)= 8 v0(x)
v0(0) · 1N

v0(1) · 1N9. (7b)

Note that the boundary conditions (1c) have been absorbed in the augmented equation
(6a).
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The associate and adjoint eigenvalue problems of equation (6) are

{l2
kA
 + lkB
 +C
 }fk =0, {l�2

kA
 *+ l�kB
 *+C
 *}ck =0, k=21, 22, . . . , (8a, b)

where the adjoint operator are given by

A
 *=diag {A* A*L1 · · · A*LN A*R1 · · · A*RN},

B
 *=diag {B* B*L1 · · · B*LN B*R1 · · · B*RN},

C
 *=diag {C* C*L1 · · · C*LN C*R1 · · · C*RN}, (9)

The eigenfunctions of the original eigenvalue problems (equations (3) and (4)) and those
of equations (8) are related by

fk = 8 uk (x)
u0(0) · 1N

uk (1) · 1N9, ck = 8 vk (x)
vk (0) · 1N

vk (1) · 1N9. (10)

Through application of the modal expansion theorem in reference [11], the solution to
equations (6) is expressed by the eigenfunction series

W(x, t)= s
2a

k=21

1
lkrk

sk (t)fk (x), (11)

where the eigenfunction normalization coefficients rk and time-dependent modal
co-ordinates sk (t) are given by

rk = �ck , (2lkA
 +B
 )fk�, (12a)

sk (t)=g
t

0

elk(t− t)�ck , F(·, t)� dt+elkt�ck , B
 U0 +A
 V0 + lkA
 U0�. (12b)

The inner product in equations (12) is defined by

�G, H�=g
1

0

ḡ(x)h(x) dx+ s
2N

j=1

ḡjhj (13)

for G=(g(x) g1 · · · g2N )T and H=(h(x) h1 · · · h2N )T, where g(x) and h(x) are elements
of a function space, and gj and hj are complex scalars. Thus, by equations (7a) and (10),
the transient response of the distributed system subject to arbitrary external, initial and
boundary disturbances is given in the exact and closed form

w(x, t)= s
2a

k=21

1
lkrk

sk (t)uk (x). (14)

According to reference [11], the convergence of the eigenfunction expansion, equation (14),
is assured without the need to assume completeness of the basis formed by the
eigenfunctions fk and ck .

4. SPATIAL STATE SPACE REALIZATION

Given a specific system, the closed form eigenfunction expansion, equation (14), is only
symbolic unless the eigensolutions (lk , fk , ck ), the eigenfunction normalization coefficients
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rk , and the modal co-ordinates sk (t) are known. However, determination of those
quantities is not trivial. The non-self-adjoint operators and eigenvalue-dependent
boundary conditions make it difficult to obtain exact eigensolutions. Estimation of the
eigenfunction normalization coefficients involves spatial integrals of the eigenfunctions, the
exact quadrature of which for general systems is not available. Also, calculation of the
modal co-ordinates is conducted on a system-by-system basis, and often requires a totally
different derivation if any system parameters, disturbance functions or boundary
conditions are changed. Because of these difficulties, transient analyses in many cases
eventually rely on approximate methods. In this section, through introduction of a spatial
state space formulation, an exact and closed form realization of the eigenfunction
expansion, equation (14), is developed.

4.1.  

By equations (10), the augmented eigenfunctions (fk and ck ) are completely determined
if the original eigenfunctions (uk and vk ) are known. Thus, the solution for uk and vk is
sufficient. In this study, a spatial state space formulation is adopted for systematic
evaluation of system eigenvalues and eigenfunctions. Let s and u(x) be an eigenpair
satisfying equations (3). By defining the spatial state space vector

h(x)=6u(x)
d
dx

u(x) · · ·
d2N−1

dx2N−1 u(x)7
T

, (15)

equations (3) are cast in the equivalent spatial state space form

d
dx

h(x)=F(s)h(x), x$(0, 1); Mb (s)h(0)+Nb (s)h(1)=0, (16a, b)

where the 2N×2N state space matrix F(s), and boundary matrices Mb (s) and Nb (s) are

0 1
. . .

. . .F(s)=G
G

G

K

k
0 1

G
G

G

L

l

,

d0(s) d1(s) · · · d2N−1(s)

Mb (s)=$mb (s)
0N×2N%, Nb (s)=$0N×2N

nb (s) %,
with dk (s)=−(aks2 + bks+ ck )/(a2Ns2 + b2Ns+ c2N ), k=0, 1, . . . , 2N−1, 0N×2N being
the N×2N zero matrix, and mb (s) and nb (s) N×2N complex matrices composed of the
coefficients of the operators ALj , BLj , CLj , ARj , BRj and CRj . The above formulation can also
be obtained from Laplace transform of equations (1) with vanishing disturbances [12].

The solution to equation (16a) is of the form

h(x)= eF(s)xh0, (17)

where h0 is a constant vector to be determined. Substitution of equation (17) into equation
(16b) gives

[Mb (s)+Nb (s) eF(s)]h0 =0. (18)
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The eigenvalues are the root of the characteristic equation

det [Mb (s)+Nb (s) eF(s)]=0; (19)

that is, s= lk , k=21, 22, . . . The eigenvector corresponding to lk is given by

h(x)= eF(lk)xh0(lk ), (20)

where the vector h0(lk ) is a non-trivial solution of equation (18) with s= lk .
Likewise, the adjoint eigenvalue problem, equations (4), is equivalent to the state space

equations

d
dx

u(x)=F*(s)u(x), x$(0, 1); M*b (s)u(0)+N*s (s)u(1)=0, (21a, b)

where the matrices F*(s), M*b (s) and N*b (s) consist of the coefficients of the adjoint
operators in equations (4), and the adjoint state space vector

u(x)=6v(x)
d
dx

v(x) · · ·
d2N−1

dx2N−1 v(x)7
T

,

with v(x) being the adjoint eigenfunction. The adjoint eigenvector corresponding to lk is
given by

u(x)= eF*(l�k)xu0(l�k ), (22)

where u0(l�k ) is a non-trivial solution of the homogeneous equation

[M*b (l�k )+N*b (l�k ) eF*(l�k)]u0(l�k )=0. (23)

The eigenfunctions uk (x) and vk (x) are the first elements of h(x) and u(x) given in
equations (20) and (22); namely,

uk (x)= eT
1 eF(lk)xh0(lk ), vk (x)= eT

1 eF*(l�k)xu0(l�k ), (24)

where e1 = (1 0 · · · 0)T$R2N, and the superscript T denotes matrix/vector transposition.
In the above state space formulation, no approximation or discretization has been made.

Exact eigensolutions can be obtained from equations (19) and (24). One advantage of the
formulation is that different system types (strings, bars, beams, etc.), various
non-self-adjoint effects (e.g., damping and gyroscopic forces) and arbitrary boundary
conditions are systematically treated by easy formation of the state space and boundary
matrices in equations (16) and (21). The algorithm for eigensolutions, however, remains
the same in all cases.

4.2.   

The eigenfunction normalization coefficient, by equations (5), (10) and (12a), is

rk =g
1

0

v̄k (x)(2lkA+B)uk (x) dx+ v̄k (0) s
N

j=1

(2lkALj +BLj )uk (x)=x=0

+v̄k (1) s
N

j=1

(2lkARj +BRj )uk (x)=x=1. (25)
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For exact evaluation of rk , decompose the exponential matrices in equation (24) into

eF(lk)x =Q eLxQ−1, eF*(l�k)x =R eL*xR−1, (26)

where

L=diag {m1 · · · m2N}, L*=diag {s1 · · · s2N},

Q=[q1 · · · q2N ]$C2N×2N, R=[r1 · · · r2N ]$C2N×2N. (27)

Here (mj , qj ) and (sj , rj ) are the eigensolutions of F(lk ) and F*(l�k ); namely,

(mjI−F(lk ))qj =0, (sjI−F*(l�k ))rj =0, j=1, 2, . . . , 2N. (28)

Write

Q−1 = [a1 · · · a2N ]T, R−1 = [b1 · · · b2N ]T, (29)

where aj , bj $C2N. The exponential matrices in equation (26) become

eF(lk)x = s
2N

j=1

emjxqja
T
j , eF*(l�k)x = s

2N

j=1

esjxrjb
T
j . (30)

Substitution of equations (24) and (30) into equation (25) yields

rk = u�T
0 (l�k )[D+DL +DR ]h0(lk ), (31)

where

D= s
2N

j,l=1

r̄j,1ql,1b�ja
T
l g

1

0

es̄jx(2lkA+B) emlx dx,

DL = s
2N

j,l=1

r̄j,1ql,1b�ja
T
l s

N

i=0

[(2lkALi +BLi ) emlx]x=0, (32a, b)

DR = s
2N

j,l=1

r̄j,1ql,1b�ja
T
l es̄j s

N

i=1

[(2lkARi +BRi ) emlx]x=1, (32c)

with rj,1 and ql,1 being the first elements of the vectors rj and ql , respectively. Exact
quadrature for the integrals in equations (32a) can be easily obtained. Hence, the
eigenfunction normalization coefficients can be precisely computed by equation (31).

In the above matrix decomposition, L and L* are assumed to be diagonal; see equations
(27). This condition can be lifted. If F(lk ) and F*(l�k ) have less than 2N linearly
independent eigenvectors, L and L* become Jordan matrices. In this case, the exponential
matrices have the form

eF(lk)x = s
2N

j=1

xmj emjxDj , eF*(l�k)x = s
2N

j=1

xnj esjxEj , (33)

where mj and nj are non-negative integers that are less than 2N, and Dj and Ej are 2N×2N
constant matrices. An exact prediction of rk similar to equation (31) can be derived.
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4.3.  -

By equations (7), (10) and (12a), the modal co-ordinates sk (t) are given by

sk (t)=g
t

0

elk(t− t) g
1

0

v̄k (x)f(x, t) dx dt+g
t

0

elk(t− t)

× s
N

i=1

[v̄k (0)qLi (t)+ v̄k (1)qRi (t)] dt+elkt g
1

0

v̄k (x)[A(lku0(x)+ v0(x))+Bu0(x)] dx

+elktv̄k (0) s
N

i=1

[ALi (lku0(x)+ v0(x))+BLiu0(x)]x=0 +elktv̄k (1) s
N

i=1

[ARi (lku0(x)

+v0(x))+BRiu0(x)]x=1. (34)

It is easy to see that the computation of sk (t) involves the integrals

g
t

0

elk(t− t) g
1

0

es̄jxf(x, t) dx dt and g
1

0

es̄jx[A(lku0(x)+ v0(x))+Bu0(x)] dx,

the exact quadrature of which is obtainable for given disturbance functions. Following
section 4.2, precise prediction of the modal co-ordinates is realized with the spatial space
formulation.

4.4.  

In a transient analysis, besides the displacement w(x, t), the slope, internal forces or
stresses of the distributed system are often determined, which calls for calculation of the
spatial derivatives (1j/1xj)w(x, t), j=1, 2, . . . , 2N−1. One unique feature of the proposed
state space realization is that these derivatives can be conveniently and accurately obtained
without additional efforts. According to equations (15) and (20),

dj

dxj uk (x)= eT
j+1h(x)= eT

j+1 eF(lk)xh0(lk ) (35)

for j=0, 1, . . . , 2N−1, where ej+1 is a 2N-vector with the ( j+1)th element being 1 and
all others 0. It follows from equation (14) that

1j

1xj w(x, t)= eT
j+1 s

2a

k=21

1
lkrk

sk (t) eF(lk)xh0(lk ). (36)

Equation (36) reduces to equation (14) when j=0. Thus, closed form slope and internal
forces of the distributed system are determined without direct differentiation of the
displacement function, which in many methods may lead to poor accuracy in computation.

In summary, the major steps in the state space realization are as follows: (1) solve
equation (18) for the eigenvalues lk and eigenvectors h0(lk ); (2) solve equation (23) for the
adjoint eigenvectors u0(l�k ); (3) evaluate the eigenfunction normalization coefficients rk by
equation (31); (4) for given external, initial and boundary disturbances, determine the
modal co-ordinates sk (t) as described in section 4.3; (5) estimate the transient response
w(x, t) and its spatial derivates by equations (14) and (36).
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Figure 1. A cantilever beam with tip mass, damper and spring.

T 1

The first ten eigenvalues of the beam (j=z−1)

k lk

1 −0·2705+ j1·1451
2 −0·1357+ j4·4930
3 −0·0896+ j13·2586
4 −0·0727+ j26·8877
5 −0·0647+ j45·4297
6 −0·0602+ j68·8941
7 −0·0575+ j97·2862
8 −0·0558+ j130·6088
9 −0·0546+ j168·8632

10 −0·0537+ j212·0505

5. EXAMPLE

The proposed transient analysis is illustrated on a cantilever Euler–Bernoulli beam with
end mass, damper and spring; see Figure 1. The lumped mass is subject to a transverse
force fb (t). The transverse displacement w(x, t) of the beam is governed by the differential
equation

r
12

1t2 w(x, t)+ d
1

1t
w(x, t)+EI

14

1x4 w(x, t)=0, x$(0, 1), (37)

Figure 2. The spatial distribution of the beam response at t=1: ····, FEM with eight elements; ——, the
proposed method, and FEM with 16 elements.
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Figure 3. The spatial distribution of the beam response at t=10: a, FEM with eight elements; b, FEM with
16 elements; c, FEM with 20 elements; d the proposed method.

with the boundary conditions

w(0, t)=0,
1

1x
w(x, t)=x=0 =0, (38a, b)

12

1x2 w(x, t)=x=1 =0, 0m 12

1t2 + c
1

1t
+ k−EI

12

1x31w(x, t)=x=1 = fb (s) (38c, d)

and zero initial disturbances. Here, EI, r and d are the bending stiffness, linear density
and viscous damping of the beam, respectively, m the inertia of the lumped mass, c the

Figure 4. Transient response of the beam at x=0.5: (a) displacement, (b) slope, (c) bending moment, (d) shear
force.
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Figure 5. The transient displacement of the beam at x=0·5.

coefficient of the damper, and k the coefficient of the spring. The spatial differential
operators defined in equations (1) are given by

A= r, B= d, C=EI
14

1x4 , (39a)

AL1 =0, BL1 =0, CL1 =1, AL2 =0, BL2 =0, CL2 = 1/1x, (39b)

AR1 =0, BR1 =0, CR1 =EI
12

1x2 , AR2 =m, BR2 = c,

CR2 = k−EI
13

1x3 . (39c)

Note that equation (38d) is an eigenvalue-dependent boundary condition. The state space
matrices defined in equations (16) are of the form

0 1 0 0 1 0 0 0

0 0 1 0 0 1 0 0
G
G

G

K

k

G
G

G

L

l

F(s)=G
G

G

K

k
0 0 0 1

G
G

G

L

l

, Mb (s)= 0 0 0 0
,

d0(s) 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0
G
G

G

K

k

G
G

G

L

l

Nb (s)= 0 0 1 0
, (40)

a(s) 0 0 −EI
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where d0(s)=−(rs2 + ds)/EI, and a(s)=ms2 + cs+ k. It can be shown that the adjoint
state space matrices defined in equations (21) are the same as those in equation (40).
Accordingly, the system eigenfunctions in this particular case are related by

vk (x)= u−k (x)= ūk (x), k=1, 2, . . . . (41)

The transient response of the beam is given by equation (14), with the eigenfunction
normalization coefficients and modal co-ordinates being

rk =(2lkr+ d) g
1

0

u2
k (x)dx+(2lkm+ c)u2

k (1), sk (t)= uk (1) g
t

0

elk(t− t)fb (t) dt.

(42a, b)

The integrals in equations (42) are evaluated by exact quadrature, as discussed in sections
4.2 and 4.3. In the numerical simulation, the values of the system parameters are chosen
as r=16, d=1.6, EI=1, m=4, c=4 and k=8. Here all the parameters are
dimensionless. Listed in Table 1 are the first ten eigenvalues of the beam, which are the
roots of the characteristic equation (18), and are computed by an iterative root-finding
scheme with the corresponding undamped natural frequencies of the beam (d=0, c=0)
as initial guesses.

Assume that the boundary disturbance is a decayed sinusoidal excitation

fb (t)=8 e−0.064t sin (45·4t).

Note that the excitation frequency is close to the fifth damped frequency of the beam,
Im (l5)=45·43; see Table 1. Thus, it is expected that the fifth mode will be dominant in
vibration. In the calculation of the beam transient response, the infinite series given in
equation (14) has to be truncated. A convergence study shows that the maximum deviation
between a seven-term prediction (i.e., the first seven terms taken from equation (14)) and
a 30-term prediction is less than 10−10. Thus, the seven-term model is accurate enough, and
will be used in the computation.

Shown in Figures 2 and 3 are the spatial distributions of the beam displacement at times
t=1·0 and 10·0, respectively, calculated by the proposed method, and the finite element
method (FEM) with four-node beam elements. At t=1·0, the results obtained by both
eight and 16 finite elements are in good agreement with that by the proposed method.
However, as time passes, the deviation between the prediction by the finite element method
and that by the proposed method grows. At t=10·0, eight finite elements lead to large
numerical errors, and the 20-element prediction gets closer to that of the proposed
seven-term modal expansion; see Figure 3. Further numerical simulation shows that at
least 32 elements are needed in order for the finite element prediction to be in good
agreement with that by the proposed method in a longer period of time; say, 0 E tE 100.
This implies that as the number of elements increases, the finite element prediction
converges to the modal expansion prediction. Indeed, one advantage of the proposed
method is to model the transient response of non-self-adjoint distributed systems with a
few unknowns to be solved.

The displacement, slope, bending moment and shear force of the beam at the mid-span
(x=0·5) are evaluated by equation (36), and plotted in Figures 4(a)–(d), for 0E tE 5.
After a long time, the beam response eventually decays, as shown in Figure 5.
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6. CONCLUSIONS

The transient response of general one-dimensional non-self-adjoint distributed systems
subject to eigenvalue-dependent boundary conditions has been obtained in exact and
closed form eigenfunction series. The proposed modal expansion differs from the existing
modal analyses in three main aspects. First, the method systematically treats
non-self-adjoint operators, eigenvalue-dependent boundary conditions, different model
parameters and various disturbances in a compact spatial state space form. Second, the
method obtains eigenfunction normalization coefficients and modal co-ordinates via exact
and explicit quadrature. Third, the method simultaneously determines transient
displacement and internal forces of the distributed system, without the need to differentiate
the displacement function. Unlike many analytical approaches, the present method does
not require specific derivations for specific problems, because its algorithm is the same for
different systems.

The high accuracy and efficiency of the proposed method is justified in the numerical
example. It is shown that if the spectra of external disturbances are narrow-banded, a few
terms from the modal series are enough to deliver accurate results. Compared with the
finite element method, the proposed method does not need to deal with large-scale
matrices, which indicates much savings of computational efforts. This feature makes the
proposed method potentially useful in the study of high frequency dynamic behaviors of
distributed systems. This issue, among others, is beyond the scope of the current study,
and will be deferred to a future investigation.
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